Thursday, April 30, 2009

page 2 smart technology, Stockholm,

(Page 2 of 2)

The company used its computer chip factory in Burlington, Vt., as a test bed for improving the efficiency of industrial water use. Using sensors to calibrate water flows and temperatures, analytics software and optimizing models, I.B.M. reduced its water consumption at the plant by 27 percent, or 20 million gallons a year, even as manufacturing output increased 30 percent.

From the Web to the Power Grid (April 30, 2009)
A Little Give and Take on Electricity (April 30, 2009)

A blog about energy, the environment and the bottom line.

The plant saves $3 million a year, partly from reduced costs for water and treatment, I.B.M. said, and energy savings — less pumping, cooling and heating the water — account for 60 percent of the cost reduction.

“It started out as a water-saving program and then we really saw the energy savings,” Ms. Nunes said. “And that’s true in industrial, agricultural and household use, this incredible interplay between energy and water.”

Today, I.B.M. is building smart traffic systems in cities including London and Brisbane, Australia, but its standout success has been in Stockholm.

In 2006, Stockholm experimented with congestion pricing, charging cars up to $4 to enter the downtown area, depending on the time of day. The cars were monitored with RFID cards and webcams that photographed license plate numbers. Drivers had to pay within two weeks or faced penalties, but I.B.M. linked the driver data to 400 convenience stores in the city to make payment easier.

Within a few weeks, the impact in Stockholm was evident, and it has proved permanent. Car traffic in downtown Stockholm has been reduced by 20 percent, carbon dioxide emissions have dropped 12 percent, and the city’s public transport system has added 40,000 daily riders, I.B.M. said. The webcams accurately read license plates, even on snowy days, more than 95 percent of the time. So the RFID tags are no longer in use. After expenses, the smart traffic system generates $80 million a year for the city.

Stockholm is a city in a Scandinavian country with a long environmental tradition, in a socially democratic nation. Yet even in Stockholm, there were complaints initially. The city also took the risk of installing the entire system, calling it a trial, and then having residents vote on it seven months later, after the benefits were apparent.

“These systems can be pretty hard to implement politically,” observed Naveen Lamba, a transportation expert in I.B.M.’s global services unit.

In New York, Mayor Michael R. Bloomberg learned that lesson last year, when state legislators brushed off his plan for a smart traffic system in Manhattan. Mr. Bloomberg’s proposal to charge drivers $8 to enter a congestion zone south of 60th Street during peak hours was supported by civic, labor and environmental groups as a way to ease traffic and to finance improvements in mass transit. But many New Yorkers, especially those outside Manhattan, viewed the mayor’s plan as a tax on their ability to move around their own city.

In Amsterdam, which hopes to cut its carbon footprint 40 percent by 2025, the city is trying a different approach, by persuading commuters to stay put instead of taxing them when they come.

As part of a “smart city” project, Amsterdam is working with Cisco and other companies to set up remote, high-tech work centers. A pilot smart work center opened in September in Almere, whose residents routinely commute to Amsterdam. The center is equipped with high-speed, Internet-linked computer work stations, high-definition video conferencing and even child day care. The Dutch experiment, Cisco says, is being closely followed by dozens of cities.

In San Francisco, Cisco has experimented with enticing commuters to try public transportation by offering a bus that has wireless Internet access for passengers and on-board touch screens that are fed constantly updated information on connections and wait times. Reliable journey times, surveys show, are what commuters most value.

The hybrid-fuel bus — a pilot project that ended earlier this year — also had a “green gauge” feature that allowed passengers to calculate the carbon-emission savings on their trips. “Visibility is crucial,” said Rick Hutley, a Cisco consultant. “When people see the environmental impact and can measure it, they jump on board and participate.”

Even railroads, a 19th-century technology, are getting more high-tech intelligence. In a trial with one of the nation’s largest railroads, G.E. is using sensors on tracks, sidings and locomotives; sophisticated computer models; and optimization software to fine-tune the flow of traffic across the railway network.

As a result, trains wait less and travel at higher speeds, an increase of 2 miles per hour on average. That may seem small, but each mile per hour improvement translates into $100 million in efficiency gains including energy savings, G.E. said. And new locomotives amount to computers on rails, wirelessly downloading information on trips, traffic, terrain and loads, and making adjustments. Such automated cruise control delivers energy savings of up to 13 percent.

“Both the trains and the tracks are evolving and getting smarter and smarter,” said Christopher Johnson, an expert in computing and decision science at G.E.’s research labs.

No comments: