Thursday, April 30, 2009

From the Web to the Power Grid

By STEVE LOHR
Published: April 29, 2009
IN the mid-1990s, the Internet took off because its technological time had come. Years of steady progress in developing more powerful and less expensive computers, Web software and faster communications links finally came together.


Back Story With The Times's Steve Lohr
Related
From the Web to the Power Grid (April 30, 2009)
A Little Give and Take on Electricity (April 30, 2009)

Jessica Brandi Lifland for The New York Times
LAB TIME Sharon Nunes, right, who heads I.B.M.’s environmental innovation group, watches Young-Hye Na demonstrate a project that makes inexpensive membranes for desalinization.


A blog about energy, the environment and the bottom line.

A similar pattern is emerging today, experts say, for what is being called smart infrastructure — more efficient and environmentally friendlier systems for managing, among other things, commuter traffic, food distribution, electric grids and waterways. This time, the crucial technological ingredients include low-cost sensors and clever software for analytics and visualization, as well as computing firepower.

Wireless sensors can now collect and transmit information from almost any object — for instance, roads, food crates, utility lines and water pipes. And the improved software helps interpret the huge flow of information, so raw data becomes useful knowledge to monitor and optimize transport and other complex systems. The efficiency payoff, experts say, should translate into big reductions in energy used, greenhouse gases emitted and natural resources consumed.

Smart infrastructure is a new horizon for computer technology. Computers have proven themselves powerful tools for calculation and communication. The next step, experts say, is for computers to become intelligent instruments of control, linking them to data-generating sensors throughout the planet’s infrastructure. “We are entering a new phase of computing, in which computers will be interacting with the physical world as never before,” said Edward Lazowska, a professor of computer science at the University of Washington.

Computer-enhanced infrastructure promises to be a lucrative market. And the outlook has seemingly improved in the economic downturn, as governments around the world embrace stimulus spending that relies heavily on public works projects, both high-tech and low.

A handful of big technology corporations, including I.B.M., Cisco and General Electric, have major initiatives under way — I.B.M. has even branded its campaign, “Smarter Planet.” Yet many other companies, both large and small, are also pursuing opportunities.

Just how large the market will be and how quickly it will develop remain uncertain. The early smart-infrastructure ventures often seem like applied science projects, encouraging but small scale. It is not clear whether they will work outside the laboratory, where they must turn a profit or justify higher taxes or user fees. Much of the early Internet investment, after all, came to grief.

The smart infrastructure wave, analysts warn, could bring a similar cycle of enthusiasm and disappointment. Yet, like the Internet, they say, the technology will prevail in the long run.

“There will be a lot of hype and a lot of things that don’t pan out,” said Rosabeth Moss Kanter, a professor of business administration at the Harvard Business School. “But the direction is absolutely right. We’ve barely scratched the surface of how information technology can help control and conserve energy use.”

I.B.M., with its large research labs and technology services business, has the most experience in the widest range of digital infrastructure projects. Many of its most advanced projects are in Europe, where energy costs are higher than in the United States. But while Europe remains a few years ahead, there is growing interest and investment in America, said Sharon Nunes, a scientist who heads I.B.M.’s environmental innovations group.

In the utility sector, I.B.M. has “smart grid” programs under way with several governments and companies, using sensors, software and computerized household meters to maintain power lines and reduce energy consumption. A Department of Energy demonstration project in Washington State, using I.B.M. technology, concluded that peak loads on utility grids could be trimmed by 15 percent. Nationally, such a reduction over a 20-year period would eliminate the need for the equivalent of 30 large coal-fired plants.

In the field of distribution, I.B.M. is working with food producers and retailers to begin reducing the $48 billion of food that is thrown away in the United States each year. In Norway, it has a project with the nation’s largest food supplier that uses radio frequency identification, or RFID, tags and tracking software over the Internet to optimize shipments from the farm to supermarket shelves, reducing spoilage.

In China, I.B.M. worked with the China Ocean Shipping Company, a big international shipper, using optimization and simulation models to consolidate 100 distribution centers into 40. The re-engineering of its distribution network cut the Chinese company’s operating costs by 23 percent and reduced carbon dioxide emissions by 15 percent, I.B.M. said.

In water management, I.B.M. is collaborating with the Nature Conservancy on its Water for Tomorrow project, which is monitoring and creating computer modeling for large river basins in Brazil, China and the United States, to help guide land use and water policies.

No comments: